top of page
執筆者の写真NISHIO KEI

vertexAIでのFunction Callingについて(落とし穴)

更新日:3月29日

1.はじめに

  • LLM+APIで特許調査をしてもらうシリーズのプログラム編です。前回は概念で説明しただけだったので、プログラムに落とし込みます。。

  • が、さっそく躓いて2日間ほど苦しんだので、供養のつもりで書きます。



2.習字するもエラーが発生

  • LLMの実行の際に、意図したAPIを呼び出したり関数を実行させることができる機能に、FunctionCallingがあります。OpenAI(GPT)Langchain(wrapperのようですが)が有名ですが、GogleCloud大好き人間としては、vertexAIの中でgemini+Function Callingを完結させたい!

  • と思ったところにいいお手本があったので、早速借りてちょっと編集して試してみました。Google colabだと一般的な認証のみでサクッと動作してくれる(はず)なのでらくちんです。↓

#@title 最初1回実行
from google.colab import auth
auth.authenticate_user()

import vertexai
from vertexai.generative_models import (
    Content,
    FunctionDeclaration,
    GenerativeModel,
    Part,
    Tool,
)

def generate_function_call(prompt: str, project_id: str, location: str) -> tuple:
    # Initialize Vertex AI
    vertexai.init(project=project_id, location=location)

    # Initialize Gemini model
    model = GenerativeModel("gemini-1.0-pro")

    # Specify a function declaration and parameters for an API request
    get_similar_patents_func = FunctionDeclaration(
        name="search similar patents",
        description = "search similar patents,number,title,claim1 relates to given search_text",
        parameters ={
            "type":"object",
            "properties":{"search_text":{"type":"string","description":"Description of the search words,sentences you wish to examine"}}
        },
    )


    get_similar_patents_tool = Tool(
        function_declarations=[get_similar_patents_func]
    )

    # Define the user's prompt in a Content object that we can reuse in model calls
    user_prompt_content = Content(
        role="user",
        parts=[
            Part.from_text(prompt),
        ],
    )

    print(user_prompt_content)

    # Send the prompt and instruct the model to generate content using the Tool that you just created
    response = model.generate_content(
        user_prompt_content,
        generation_config={"temperature": 0},
        tools= [get_similar_patents_tool],
    )
    response_function_call_content = response.candidates[0].content
    print(response_function_call_content)
    #print(response.candidates[0].to_dict()["content"])

    # Check the function name that the model responded with, and make an API call to an external system
    if (
        response.candidates[0].content.parts[0].function_call.name
        == "get similar patents"
    ):

        # Extract the arguments to use in your API call
        tex = (
            response.candidates[0].content.parts[0].function_call.args["search_text"]
        )
        print(f"{tex}であります")

        # Here you can use your preferred method to make an API request to fetch the current weather, for example:
        # api_response = requests.post(weather_api_url, data={"location": location})

        # In this example, we'll use synthetic data to simulate a response payload from an external API
    api_response = """{ "search_text": "アノードとカソードの間を樹脂で充填して絶縁したダイオード", "patents":{'US98765432','EP0099233'} }"""


    # Return the API response to Gemini so it can generate a model response or request another function call
    response = model.generate_content(
        [
            user_prompt_content,  # User prompt
            response_function_call_content,  # Function call response
            Content(
                parts=[
                    Part.from_function_response(
                        name="search similar patents",
                        response={
                            "content": api_response,  # Return the API response to Gemini
                        },
                    )
                ],
            ),
        ],
        tools=[get_similar_patents_tool],
    )
    # Get the model summary response
    summary = response.candidates[0].content.parts[0].text

    return summary, response


これは、お手本に載ってる場所情報の引数とそれを呼び出す関数を、インプットしたサーチ文章に置き換えただけです。

が、これを実行すると




InvalidArgument: 400 Request contains an invalid argument


・・・requestがうまく実行されてない、ということで、いろいろ試す(正しく引数が渡せてないとかなので、引数確認したり。関数自体を単純化したりなど)ですが、エラーが出続けます。


それで2日ほど苦しんだところ、解決しました。



3.解消

  • お手本を長らく眺めて試行錯誤した結果、Functionの名前部分がスペースが入ってる!のが原因でした。下のコードの赤字部分のようにスネークケースに修正すると無事に実行できました。


import vertexai
from vertexai.generative_models import (
    Content,
    FunctionDeclaration,
    GenerativeModel,
    Part,
    Tool,
)

def generate_function_call(prompt: str, project_id: str, location: str) -> tuple:
    # Initialize Vertex AI
    vertexai.init(project=project_id, location=location)

    # Initialize Gemini model
    model = GenerativeModel("gemini-1.0-pro")

    # Specify a function declaration and parameters for an API request
    get_similar_patents_func = FunctionDeclaration(
        #このnameをスペースで入れるとパラメータのエラーが発生する。
        name="get_similar_patents",
        description = "search simiular patents,number,title,claim1 relates to given search_text",
        parameters ={
            "type":"object",
            "properties":{"search_text":{"type":"string","description":"Description of the search words,sentences you wish to examine"}}
        },
    )


    get_similar_patents_tool = Tool(
        function_declarations=[get_similar_patents_func]
    )

    # Define the user's prompt in a Content object that we can reuse in model calls
    user_prompt_content = Content(
        role="user",
        parts=[
            Part.from_text(prompt),
        ],
    )

    print(user_prompt_content)

    # Send the prompt and instruct the model to generate content using the Tool that you just created
    response = model.generate_content(
        user_prompt_content,
        generation_config={"temperature": 0},
        tools= [get_similar_patents_tool],
    )
    response_function_call_content = response.candidates[0].content
    print(response_function_call_content)
    #print(response.candidates[0].to_dict()["content"])

    # Check the function name that the model responded with, and make an API call to an external system
    if (
        response.candidates[0].content.parts[0].function_call.name
        == "get similar patents"
    ):

        # Extract the arguments to use in your API call
        tex = (
            response.candidates[0].content.parts[0].function_call.args["search_text"]
        )
        print(f"{tex}であります")

        # Here you can use your preferred method to make an API request to fetch the current weather, for example:
        # api_response = requests.post(weather_api_url, data={"location": location})

        # In this example, we'll use synthetic data to simulate a response payload from an external API
    api_response = """{ "search_text": "アノードとカソードの間を樹脂で充填して絶縁したダイオード", "patents":{'US98765432','EP0099233'} }"""


    # Return the API response to Gemini so it can generate a model response or request another function call
    response = model.generate_content(
        [
            user_prompt_content,  # User prompt
            response_function_call_content,  # Function call response
            Content(
                parts=[
                    Part.from_function_response(
                        name="get_similar_patents",
                        response={
                            "content": api_response,  # Return the API response to Gemini
                        },
                    )
                ],
            ),
        ],
        tools=[get_similar_patents_tool],
    )
    # Get the model summary response
    summary = response.candidates[0].content.parts[0].text

    return summary, response


実行結果:


('類似する特許として、特許番号US98765432、EP0099233が挙げられます。',
 candidates {
   content {
     role: "model"
     parts {
       text: "\351\241\236\344\274\274\343\201\231\343\202\213\347\211\271\350\250\261\343\201\250\343\201\227\343\201\246\343\200\201\347\211\271\350\250\261\347\225\252\345\217\267US98765432\343\200\201EP0099233\343\201\214\346\214\231\343\201\222\343\202\211\343\202\214\343\201\276\343\201\231\343\200\202"
     }
   }
   finish_reason: STOP
   safety_ratings {
     category: HARM_CATEGORY_HATE_SPEECH
     probability: NEGLIGIBLE
     probability_score: 0.10034840553998947
     severity: HARM_SEVERITY_NEGLIGIBLE
     severity_score: 0.11899801343679428
   }
   safety_ratings {
     category: HARM_CATEGORY_DANGEROUS_CONTENT
     probability: NEGLIGIBLE
     probability_score: 0.1630452573299408
     severity: HARM_SEVERITY_NEGLIGIBLE
     severity_score: 0.13017480075359344
   }
   safety_ratings {
     category: HARM_CATEGORY_HARASSMENT
     probability: NEGLIGIBLE
     probability_score: 0.1790994256734848
     severity: HARM_SEVERITY_NEGLIGIBLE
     severity_score: 0.12283853441476822
   }
   safety_ratings {
     category: HARM_CATEGORY_SEXUALLY_EXPLICIT
     probability: NEGLIGIBLE
     probability_score: 0.25590112805366516
     severity: HARM_SEVERITY_NEGLIGIBLE
     severity_score: 0.03283695504069328
   }
 }
 usage_metadata {
   prompt_token_count: 151
   candidates_token_count: 31
   total_token_count: 182
 })





4.最後に

  • やっとスタートです。(次回に続く)



閲覧数:184回0件のコメント

最新記事

すべて表示

Comentarios


bottom of page